
 Page 1/9

Applying Deadlock Risk Assessment in Architectural Models of
Real-Time Systems

Antonio Monzón1, José-Luis Fernández-Sánchez2, Jorge Ruíz-de-Castañeda2

1: Airbus Military, John Lennon Av., 28906 Getafe, Spain
2: Industrial Engineering School, Technical University of Madrid (UPM),

José Gutiérrez Abascal, 2, 28006 Madrid, Spain

Abstract: Software Architectural Assessment is a
key discipline to identify at early stages of a real-time
system (RTS) synthesis the problems that may
become critical in its operation. Typical mechanisms
supporting concurrency, such as semaphores or
monitors, usually lead to concurrency problems in
execution time difficult to identify, reproduce and
solve. For this reason it is crucial to understand the
root causes of these problems and to provide
support to identify and mitigate them at early stages
of the system lifecycle. This paper aims to present
the results of a research work oriented to the
creation of a tool to assess deadlock risk in
architectural models of a RTS. A concrete
architectural style (PPOOA-UML) was used to
represent PIM (Platform Independent Models) of a
RTS architecture supported by the PPOOA-Visio
CASE tool. A case study was used to validate the
deadlock assessment tool created. In the context of
one of the functions of a military transport aircraft,
the auto-tuning function of the communications
system was selected for the assessment of the
deadlock risk. According to the results obtained
some guidelines are outlined to minimize the
deadlock risk of the system architecture.

Keywords: Software Architecture, Real-Time, UML,
Concurrency, Deadlock.

1. Introduction

Software architecture modeling is a relevant subject
for the production of real-time systems. The
development of architectural analysis and design
languages in the last years has permitted to
represent both structure and behavior of such
systems with less consideration to implementation
details.

In this context, an architectural style is a consistent
set of building elements with architecting rules for
using these building elements to create system
models. The style well-formedness rules assure a
minimum consistency level. Nevertheless, in addition
to the notational or syntactic capabilities of a style,
process and guidelines are also needed to help
software architects to produce feasible models
concerning particular characteristics (e.g. safety).
PPOOA architectural style [9] has been selected
because it combines both UML notation and MDE

concerns, allowing software structural analysis. In
addition this style is particularly useful to explicitly
represent concurrency issues.

Deadlock is far from being a solved problem. It is in
fact an open issue for many research and technical
works [2][4][16] and of high interest for industry
especially in the real-time embedded domain. Over
the last three decades different formal methods have
been developed to specify and verify system
properties. In this context, Model Checking [5] has
become a reference discipline for such approach. Its
main goal is to build a finite model (Kripke structure)
of a system and check that relevant properties are
present in it. What is remarkable from this approach
is that an exhaustive search of the state space is
performed in order to ensure the property fulfilment.
One of the properties particularly checked through
model checking techniques applied to concurrent
systems is deadlock absence [2][4]. Although the
main criticism to this approach is the classical state
explosion of the models involved, from a practitioner
point of view the main drawbacks are the intrinsic
complexity of the modelling techniques and their
scalability to large RTS in industrial environments.
Industrial applications require simple and practical
approaches to be easily adopted.

In addition to deadlock detection and prevention, the
third traditional strategy is deadlock avoidance.
Under this category falls a successful mechanism
that provides deadlock-freedom. The set of resource
access protocols known as priority inheritance [14]
has as major objective the resolution of priority
inversion. As a collateral benefit deadlock is also
avoided if priority ceiling (PCP) or highest locker
(HLP) protocols are present in the RTOS. The main
issue with this mechanism is that very few
commercial RTOS support these protocols and their
ad-hoc implementation is complex and therefore
onerous. Furthermore some authors have reported
performance overheads derived from the utilization
of these protocols [3].

This paper proposes the implementation of graph
theory to characterize the deadlock risk of an
architectural model of a RTS. The objective is not to
avoid or detect deadlock occurrence or to prove that
a design is deadlock-free, but to assess the risk of
deadlock present in an architectural model. It is
assumed that a model has an intrinsic risk of

 Page 2/9

deadlock which may condition further design
decisions. The idea with this approach is to make
designers aware about this risk as soon as possible
and with the minimum analysis effort required. The
kind of model verification proposed in this paper is
static analysis of platform independent models (see
Fig. 1).

Figure 1: MDA Context

We propose a new control-flow complexity metric
based on the properties of the architectural models
of a RTS. The information considered in the
characterization of deadlock risk comes from the
following sources: cyclic complexity of the model and
structural and dynamic deadlock patterns. Although
the technique proposed is applicable to any kind of
system, deadlock topic is of special interest in RT
domain.

Although many CASE tools exist in the market to
support the software design activities, most of them
focus only on the notational aspects with very little
concern on engineering activities (e.g. alternative
design tradeoffs). Several commercial tools [1][11]
support real-time characteristics, but with no specific
feature to analyze concurrency problems. Static
analysis tools [7] partially cover this topic but their
main purpose is to analyse the quality of the
software source code (not the models). Finally
model-checking tools [2] require the usage of
detailed models with formal notations. A clear gap
has been identified in current modelling tools to
support the concurrency problem assessment at
high level of abstraction with semiformal notations
(i.e. UML).

In section 2 we briefly describe the PPOOA-UML
style fundamentals to better understand the
examples of models used later. The proposed
characterization of deadlock is presented in section

3. The tool created to automate this assessment is
outlined in section 4. And finally sections 5, 6 and 7
discuss about a case study and the alternative
design proposed according to the results from the
assessment to the concrete RTS model example.

2. PPOOA Architectural Style

A software architectural style encapsulates decisions
about its building elements and emphasizes
important constraints on the elements and their
relations. The PPOOA (Pipelines of Processes in
Object Oriented Architectures) architectural style
provides building elements for RTS such as
components and coordination mechanisms [9].
Constraints on building elements are represented in
the PPOOA metamodel and by explicit guidelines.
These guidelines not only represent the semantics of
the style, they are also helpful for the software
architect using the style.

The UML stereotypes are extended with the
elements of the PPOOA style (periodic and aperiodic
processes, controller objects, and coordination
mechanisms). UML Activity diagrams are also
adapted for PPOOA style requirements, specifically
modelling system responses [8].

The PPOOA architecture diagram is used instead of
the UML component diagram to describe the
structural view of the RTS architecture. Coordination
mechanisms, used as connectors, are also
represented in the architecture diagram.

The RTS behaviour view is supported by the "Causal
Flow of Activities (CFA)" representation. A CFA
represents a behavioural view of the flow of activities
performed by the system in response to an event.
PPOOA uses the UML activity diagram with
partitions to support allocation of activities to the
architecture component instances performing them.

For the purposes of this paper, these are the
relevant abstractions used in PPOOA for explicit
concurrency modelling:

 Task: PPOOA building element representing
threads or light processes. It may be periodic or
aperiodic.

 Resource: Logical resources can be represented
in PPOOA by Domain Components or
Structures. These building elements are
abstractions of design classes and abstract data
types respectively.

 Semaphore: A pure synchronization mechanism.
It is the PPOOA building element that supports
the synchronization of tasks. Semaphores are
used to protect shared logical resources.

 Bounded Buffer: A coordination mechanism
representing a FIFO queue used to
communicate asynchronously two tasks.

 Page 3/9

3. Deadlock Characterization

According to Coffman [6], the four necessary and
sufficient conditions for deadlock are: Mutual
Exclusion, Hold and Wait, Non Pre-emption and
Circular Wait.

Circular waiting depends essentially on the tasks
interdependency. Tasks must be in a dependency
cycle to have a circular waiting. Hold and wait
condition depends on the coordination protocol as it
describes the way tasks are permitted to access
resources. Non-preemption and mutual exclusion
conditions may depend on resources constraints and
coordination protocols.

In order to highlight the way deadlock is
characterized in PPOOA, a theoretical example is
used to represent the structural model of a generic
system. In Fig. 2, tasks are represented by
architectural elements of the type “Process” and
resources in the diagram are represented by
“Structure” elements of PPOOA style. In this
example, the resources are protected by PPOOA
semaphores (coordination mechanisms in the style)
to guarantee mutual exclusion. This protection
involves the first condition for deadlock (mutual
exclusion).

Figure 2. Potential deadlock in the PPOOA
architectural view.

Circular waiting condition is represented in the
PPOOA architectural view by a dependency cycle. In
this case, tasks D, E and G conform a cycle. The
rest of tasks in the diagram do not involve any cycle
and therefore they cannot contribute to deadlock
risk. Non-preemption condition is implicit in the
semaphore coordination protocol and cannot be
represented diagrammatically.

From the circular waiting condition a first criterion for
the characterization of deadlock risk can be
extracted: identify all dependency cycles where two
or more tasks are involved in an architectural model.
The reason why two or more tasks are required is
that at least two active elements must be competing

for shared resources in a dependency cycle. The
higher the cyclic complexity of model, the higher its
deadlock risk.

 Cyclic dependency of several tasks is necessary but
not sufficient for deadlock. For the purposes of this
paper the rest of conditions shall be summarised as
follows: the tasks involved in a dependency cycle
must be waiting for conditions depending on other
tasks in the same dependency cycle.

The approach proposed in this paper is to refine the
cyclic complexity with additional criteria from the
structural and behavioural views of an architectural
model. This refinement strategy is based on the
identification of structural and behavioural deadlock
patterns within the dependency cycles identified in
the model. Deadlock risk is broken down into two
factors: structural or intrinsic deadlock risk, and
behavioural or dynamic deadlock risk.

For the structural part of the deadlock risk, four
deadlock patterns are proposed, considering the
type of constructive elements and the dependency
relationships with others in the dependency cycles.

The first structural deadlock pattern (Fig. 3.a)
considered in this characterization involves two (or
more) tasks and two (or more) resources protected
with respective semaphores in the same
dependency cycle. This is the classical deadlock
case where several tasks are waiting for each other
to use locked resources.

(a) Protected Resources Pattern (b) Buffers Pattern

(c) Synchronous Communication
Pattern

(d) Buffer-Semaphore Pattern

Figure 3. Structural Deadlock Patterns.

According to Sutter [16], protected resources are not
the only architectural elements susceptible to cause
waiting of tasks. Buffers can also introduce some
risk of waiting when a task accesses them for some
data and they are occasionally empty or full. For this
reason buffers can also be considered as risky
elements with respect to deadlock. The second
structural pattern (Fig. 3.b) involves two (or more
tasks) and two (or more) buffers in the same
dependency cycle.

 Page 4/9

Synchronous message communication can be
represented using a combination of a buffer of
capacity one and a binary semaphore [10]. This
inter-task communication pattern involves task
waiting: the producer task waits until the consumer
task acknowledges message reception. Therefore it
can also be considered risky for deadlock. The third
structural pattern (Fig. 3.c) involves two (or more)
tasks and one buffer and one semaphore (not
protecting resources) in the same dependency cycle.

Finally, for consistency with the two first patterns, a
fourth pattern shall be considered (Fig. 3.d): two (or
more) tasks, one (or more) buffer and one (or more)
semaphore protecting resources in the same
dependency cycle.

Each time one of these patterns is found in a
dependency cycle, the tool records the architectural
elements involved and marks them as risky elements
from the structural point of view. The dependency
cycle where they participate is considered therefore
as risky from the structural perspective. The Static
Deadlock Risk is defined in this characterization as
the total number of risky dependency cycles present
in the architectural model.

For the behavioural or dynamic part of deadlock risk,
four additional sequence patterns are considered in
the behavioural diagrams of the architectural style.

The first pattern (Fig. 4.a) represents the separation
of control flow in a CFA. This pattern involves
execution parallelism of activities and therefore can
be considered risky for deadlock.

(a) Flow Separation Pattern

(b) Task-Semaphore-Resource Pattern

(c) Task-Buffer Pattern

(d) Task-Buffer-Semaphore Pattern

Figure 3. Behavioural Deadlock Patterns.

The second pattern (Fig. 4.b) is represented by the
sequence Task-Semaphore-Resource in a CFA.
This pattern is the behavioural counterparty of the

first structural pattern. The third behavioural pattern
(Fig. 4.c) corresponds to the second structural
pattern and the fourth (Fig. 4.d) corresponds to the
third structural pattern. The fourth structural pattern
has no specific behavioural counterparty because it
is in fact considered in the second and third patterns.

Each time one of these sequences is found in a CFA
diagram, the tool records the architectural elements
involved and checks if they are included in the list of
risky elements from the static point of view. In
positive case the dependency cycle where they
participate is considered therefore as risky from the
behavioural perspective.

The overall deadlock risk is characterized by the
total number of dependency cycles containing both
structural and behavioural deadlock patterns. The
interpretation of these parameters is the following:
whenever the architectural model of a system has a
dependency cycle, there is potential risk of deadlock.
This risk is confirmed when those dependency
cycles contain structural deadlock patterns. If they
do not contain structural deadlock patterns, they can
be considered as (conceptually) deadlock-free, with
the information available at this stage. Finally the risk
is refined with behavioural deadlock patterns.
Nevertheless, the absence of behavioural patterns
does not guarantee deadlock absence, because this
view can be lacking information of the implemented
architecture (e.g. sometimes designers consider
implicit the participation of semaphores in the access
protocol to a protected resource described in a
CFA). As a summary, for the purposes of this paper
the most relevant evidence of deadlock risk is the
existence of dependency cycles containing structural
deadlock patterns in structural diagrams. If no risky
cycle exists, no deadlock may occur. The
characterization proposes a refinement of this
parameter based on the sequence information
available in the behavioural view.

4. Automatic Deadlock Risk Assessment

The algorithm outline proposed to assess deadlock
risk in this paper is as follows:

1. Find all dependency cycles in architectural
diagrams where two or more tasks are involved.

2. Search all the structural patterns present in the
risky cycles previously identified.

3. Mark all the building elements involved in risky
cycles with structural patterns as risky elements.

4. Assign a numeric value to the intrinsic deadlock
risk: the amount of risky cycles containing structural
patterns.

5. Search all the behavioural patterns present in the
CFAs where the risky elements participate.

 Page 5/9

6. Assign a numeric value to the behavioural
deadlock risk: the amount of risky cycles containing
behavioural patterns.

The first step of this algorithm was implemented
through the particularization of a cycle detection
algorithm applicable to undirected graphs with a
depth first search strategy. More details about this
algorithm were presented in a previous paper [12].

The results from the cycle detection tool are:

 List of cycle sequences

 List of elements involved in the cycles

Once the cycles are identified, the tool takes into
account two additional contributions to deadlock risk:
structural patterns and behavioural patterns. The
structural patterns described in previous section are
searched in all the dependency cycles. Once a
structural pattern is identified the cycle is marked as
risky as well as all the elements participating in the
pattern. For the behavioural part, all the CFAs are
scanned to search each of the patterns identified.
This time only those elements considered risky from
the structural point of view are considered in the
search. Each time a behavioural pattern is found the
corresponding CFA is marked as risky. The tool
takes into account for the overall behavioural
deadlock risk if the elements participating in a risky
cycle also participate in a behavioural pattern. In this
case the cycle is also marked as risky from the
behavioural point of view.

We used PPOOA-Visio tool [13], which is currently
supported on the top of Microsoft-Visio®. This tool is
flexible enough to extend its functionality to support
additional engineering features to assess the
concurrency problem identified in this paper. The
strategy selected was to use an XML export add-on
to generate an intermediate file containing the
dependencies and additional information necessary
for the tools to assess the models. This tool is
conceived to help system architects to assess the
deadlock reliability of their designs. But perhaps the
most important aspect is that it enables them to
compare the relative deadlock risk of several design
alternatives, in order to better make and justify
formal architectural decisions.

5. Case Study Description

A case study in the field of military avionics is
presented here to illustrate the applicability of the
proposed deadlock analysis and to validate the
assessment tool.

One of the functions provided by the avionics
embedded in military aircrafts is the automatic
communications management. In particular, the
function known as “Automatic Tuning of
Communication Equipments” (a.k.a. Autotuning) was
selected to illustrate the approach of this paper. This

function is in charge of setting the frequencies of all
on-board communication equipments (mainly radios
and transceivers) in order to avoid unauthorized
interception of communications by the enemy.

Figure 5. Autotuning Plan Subsystem.

The architectural model for this function was broken
down into three subsystems: Autotuning Plan (Fig.
5), Tuning Configuration (Fig. 6) and Autotuning
Views Management. This third subsystem was not
relevant for this paper.

The Autotuning Plan subsystem captures time,
aircraft position and waypoint information from the
avionics bus, represented in the architecture by the
buffers B2, B3 and B4 respectively. Tasks T2, T4
and T5 are in charge to update these data in the
buffer B1. The periodic process T1 (Management
Autotuning Plan) is the main task of this subsystem
and implements the execution of the autotuning
plan. This task browses the list of planned events,
implemented by resource R1, and compares them
with the queue of events captured in real-time in the
buffer B1. It is important to remark that B1 is
combined with the binary semaphore S3
(synchronous communication pattern) to ensure that
all the messages from the event handlers are
received by the plan manager T1.

Figure 6. Tuning Configuration Subsystem.

 Page 6/9

The tasks T1 and T3 can concurrently write on the
shared resource R1. In terms of problem domain, the
pilot and the planning process can update the
autotuning plan. For this reason this resource is
protected with another semaphore (S2).

Whenever the planning process T1 detects that a
condition takes place, as the result of the periodic
comparison, it pushes a new triggering event in the
stack R3, which represents the command for the
second subsystem to reconfigure the communication
equipments tuning.

The aperiodic task T7 captures the event from the
protected stack R3 and the controller element
Autotuning Configuration sends the command to set
new tuning configuration to the communication
equipments, represented in the diagram by
resources R5, R6, R7 and R8. The process T8
detects conflicts in the configurations of different
communication equipments and sends the warning
messages through the corresponding bus ports
represented by the buffer elements B6 and B7.

This architecture was selected to illustrate the
handling of shared resources (it allows parallel
execution of tasks), but has some concurrency
problems that shall be highlighted in the following
section.

The behavioural part of the model is partially
represented by the CFA “Triggered Event” (see Fig.
7). This CFA can be interpreted as follows: at the
arrival of the internal event “New conditions” the

sequence of activities triggered within the system is:

1. T1 (autotuning plan manager) gets new conditions
from B1.

2. As long as B1 is protected by S3, before
accessing the buffer, the semaphore must be
acquired first. In execution time T1 may be forced to
remain waiting for the semaphore to be released.

3. Once the buffer is available the message is
received by T1.

4. After that the semaphore is released and the list of
events opened for reading the next event in it. This
list is protected by semaphore S2, and thus T1 can
remain waiting until release.

5. T1 compares the information captured from B1
with the one in the list, transformed by the
comparison algorithm R4, and if the result is positive
the event in the list is flagged and the command for
the communication equipments reconfiguration is
sent through the intermediate stack R3 (protected by
the semaphore S1).

6. Otherwise the next element in the list R1 is
analyzed until list end.

6. Results Discussion

The tool transforms the architectural diagrams
described in previous section into the aggregated
graph shown in Figure 8. This undirected graph
represents all the elements of the architecture and
the relations among them (regardless their type).

Figure 7. CFA Triggered event.

 Page 7/9

Figure 8. Structural Graph.

This graph is used as input by the cycle identification
tool as a first step of the deadlock characterization.
The results from this tool are shown in Table 1.

Table 1. List of dependency cycles detected.

Cycle Elements
Deadlock

Risk?

1
PP_Manager_Autotuning_Plan,

Semaphore 3, PP_Update_A/C_Position,
B_New_Conditions

Yes

2
AP_Update_Waypoint_Passed,

Semaphore 3, PP_Update_A/C_Position,
B_New_Conditions

Yes

3

PP_Manager_Autotuning_Plan,
Semaphore 3,

AP_Update_Waypoint_Passed,
B_New_Conditions

Yes

4
AP_Update_Waypoint_Passed,

Semaphore 3, PP_Update_Time,
B_New_Conditions

Yes

5
PP_Manager_Autotuning_Plan,

Semaphore 3, PP_Update_Time,
B_New_Conditions

Yes

6
PP_Update_A/C_Position, Semaphore 3,

PP_Update_Time, B_New_Conditions
Yes

7
Conditions_Checker,

PP_Manager_Autotuning_Plan
No

8

AP_Capture_Triggered_Event,
B_Tuning_Configuration,

AP_Detect_Conflicts,
CT_Autotuning_Configuration

No

According to this list, 8 dependency cycles were
detected. Out of them only 6 dependency cycles
contain two or more tasks with structural deadlock
patterns. Therefore the Structural Deadlock Risk
(SDR) of this model is 6.

In Figure 8 the elements participating in the
structural deadlock patterns are shown in circles.

These elements shall be considered risky for
deadlock. The risky elements detected are:

 Tasks:

o PP_Manager_Autotuning_Plan (T1)

o PP_Update_A/C_Position (T4)

o AP_Update_Waypoint_Passed (T2)

o PP_Update_Time (T5)

 Buffers: B_New_Conditions (B1)

 Semaphores: Semaphore 3 (S3)

Once the information from structural diagrams is
used, the rest of information relevant for the
deadlock analysis comes from the CFAs. In this case
study, only three out of seven CFAs included risky
elements. The information generated by the tool is
shown in Table 2.

Table 2. List of behavioural patterns detected.

Task-Semaphore-Buffer T-B
T-S-

R
Separa

tion

1

Analyse
waypoint(AP_Update_Waypoint_Pass
ed) -> Acquire(Semaphore 3) -> Send

new condition(B_New_Conditions)

None None 0

2

Analyse time(PP_Update_Time) ->
Acquire(Semaphore 3) -> Send

time(B_New_Conditions)
Analyse

position(PP_Update_A/C_Position) ->
Acquire(Semaphore 3) -> Send

position(B_New_Conditions)

None None 1

4

Request new
conds(PP_Manager_Autotuning_Plan)

-> Acquire(Semaphore 3) ->
Receive(B_New_Conditions)

None None 0

From this information the following conclusions can
be extracted:

 All the risky elements participate in the risky
CFAs 1, 2 and 4.

 All the risky elements participate in at least one
behavioural pattern in some risky CFA.

 All the cycles considered risky from the
structural point of view are therefore also risky
from the behavioural perspective. The Dynamic
Deadlock Risk (DDR) of this model is 6.

As a final summary the Table 3 shows the risky
elements and the cycles and CFAs where they
participate.

7. Alternative Design Discussion and Validation

From the results of previous section the following
conclusions can be extracted:

 The elements B_New_Conditions (B1) and
Semaphore 3 (S3) are the most conflictive as
long as both participate in all risky cycles and
CFAs (see Table 3).

 Page 8/9

 The rest of risky elements participate each in
three dependency cycles and one CFA, but all
related with the same pattern.

 The elements B1 and S3 are part of the
synchronous communication pattern, required to
ensure that all the messages sent by the tasks
T2, T4 and T5 are received by the plan manager
task T1. This pattern is in fact the only source of
deadlock risk identified in this case study.

A simple way to reduce the deadlock risk can be to
change the current communication pattern among
these tasks to an asynchronous pattern. This pattern
involves removing the semaphore S3. The resulting
model has no risky elements as the semaphore
causing the risk is missing. Nevertheless, this design
decision is in conflict with the real-time requirement
of ensuring that no message from the event
managers is lost. For this reason this alternative was
discarded.

A second alternative design was proposed in order
to fulfil with both requirements: low deadlock risk and
reliable message handling. The change consists in
splitting the current buffer B_New_Conditions into
three buffers each communicating the pairs of tasks:
T1-T2, T1-T4 and T1-T5. The results from the
deadlock assessment tool show that no risk is
present in this alternative model. Further analysis
can be performed with temporal data to assess tasks
overload with complementary tools like Cheddar.

The validation of the parameters proposed in this
paper, as well as the results of the different case
studies used to derive them were performed with the
aid of the schedulability analysis and simulation tool
Cheddar [15], developed in the University of Brest.
Cheddar is interoperable with PPOOA-Visio [10]. A
specific developed Visio add-on implements the
interoperability between PPOOA-Visio and Cheddar,
and allows capturing architecture model information
generated with PPOOA as an XML file input for
Cheddar. Execution times estimation was added to
models in order to allow the simulation of execution
in Cheddar showing when deadlock occurs.

8. Conclusions and Future Work

This paper proposes a complementary approach to
the existing deadlock prevention, avoidance and
detection techniques. The automated analysis of
basic properties of an architectural model allows the
characterization complex problems such as the
overall deadlock risk of an RTS architecture with
very few design information. The model information
used in this characterization is:

 Cyclic dependency of tasks and resources

 Structural patterns in architectural diagrams

 Behavioural patterns in activity diagrams

The appropriate combination of these three sources
provides factors (Structural Deadlock Risk and
Behavioural Deadlock Risk), which can be used to
compute the potential risk of a design to have
deadlocks and in addition to compare alternative
designs to choose the most appropriate with respect
to deadlock.

This analysis has been validated by the application
of the tool created to a real case study in the field of
military avionics, and the results of the case study
were used to make design decisions on alternative
designs more reliable concerning deadlock.

Although the tool was created as an add-on on top
of PPOOA-Visio, the analysis proposed in this paper
can be extended to architectural designs created
with any other architectural description language
representing explicit concurrency. The conclusions
obtained are of general applicability and were
considered relevant in practice to make architectural
decisions at early stages of the conception of an
avionics system.

The following steps of the research work shall be
focused in the tuning of the tool with the information
extracted from the application to other case study in
the field of robotic space missions. The results of
these research activities shall be the core of a
doctoral thesis. The prototype of the deadlock risk
assessment tool has been developed as part of an
MsC thesis presented in 2009 in the Technical
University of Madrid (UPM).

ID Risky Element 1 2 3 4 5 6 CFA1 CFA2 CFA4

1 PP_Manager_Autotuning_Plan (T1) X X X X

2 PP_Update_A/C_Position (T4) X X X X

3 AP_Update_Waypoint_Passed (T2) X X X X

4 PP_Update_Time (T5) X X X X

5 B_New_Conditions (B1) X X X X X X X X X

6 Semaphore 3 (S3) X X X X X X X X X

Risky Cycles Risky CFAs

Table 3. List of risky elements and their participation in risky cycles and CFAs.

 Page 9/9

Finally it should be mentioned that the approach
proposed in this paper can be considered as a
partial view of a future architecture assessment tool.
Additional concurrency and architectural problems in
general (e.g. race conditions or low cohesion) could
also be addressed with similar approaches. Ideally
an engineering dashboard with different indicators of
system properties could be created to support
architectural decisions and trade-offs.

Acknowledgments

We would like to send our special tanks to Ágatha
Puigdueta for her contribution in the description of
the problem domain. She works as SW Architect in
the SW Avionics Department of Systems Center of
Competency of Airbus Military.

For confidentiality reasons no express references
have been made to specific project information. All
the documentation is under both industrial
confidentiality and military security constraints.

All the figures, tables and data shown in this paper
were created specifically for the purposes of this
paper (none of them appear in any document under
Airbus Military copyright).

References

[1] ARTiSAN Software Tools, Inc., Real-Time
Studio, http://www.artisansw.com

[2] Bensalem, S., Bozga, M., Nguyen, T., Sifakis, J.:
D-Finder: A Tool for Compositional Deadlock
Detection and Verification. 21st ICCAV. LNCS,
vol. 5643, pp. 614—619. Springer-Verlag,
Grenoble, France (July 2009)

[3] Briand, L., Roy, D.: Meeting Deadlines in Hard
Real-Time Systems - The Rate Monotonic
Approach. IEEE Computer Society Press, 1999.

[4] Chaki, S., Sinha, N.: Assume-Guarantee
Reasoning for Deadlock. SEI Technical Note,
CMU/SEI-2006-TN-028. (September 2006)

[5] Clarke, E., Grumberg O., Peled, D.: Model
Checking. MIT Press, Cambridge, MA, USA.
(1999)

[6] Coffman, E. G., Elphick, M. J., Shoshani A.:
System deadlocks. Computing Surveys, 3(2):67-
78 (June 1971)

[7] Emanuelsson, P., Nilsson, U.: A Comparative
Study of Industrial Static Analysis Tools.
Technical Reports in Computer and Information
Science. Report number 2008:3. Linköping
University (January 2008)

[8] Fernandez, J.L., Monzon, A.: Extending UML for
Real-Time Component Based Architectures.
International Conference on Software & Systems
Engineering. Paris (December 2001)

[9] Fernandez, J.L.: An Architectural Style for
Object-Oriented Real-Time Systems. Fifth
International Conference on Software Reuse.
IEEE (1998)

[10] Fernandez, J.L., Marmol, G.: Modelling and
Evaluating Real-Time Software Architectures.
Ada-Europe 2009. LNCS, vol. 5570, pp. 164--
176. Springer-Verlag, Brest, France (2009)

[11] IBM Rational, Rhapsody System Designer,
http://www-01.ibm.com/software
/awdtools/rhapsody

[12] Monzon, A., Fernandez, J.L.: Deadlock Risk
Assessment in Architectural Models of Real-
Time Systems. IEEE Symposium on Industrial
Embedded Systems (SIES 2009). IEEE
Computer Society Press, 2009, pp. 181--190.
Lausanne, Switzerland (July 8-10, 2009)

[13] PPOOA-Visio, http://www.ppooa.com.es

[14] Sha, L., Rajkumar, R., J. Lehoczky, Priority
Inheritance Protocols: An Approach to Real-
Time Synchronization. IEEE Transactions on
Computers, Vol. 39, No. 9, 1990

[15] Singhoff, F., Legrand, J., Nana, L., Marcé, L.
Cheddar: A flexible real-time scheduling
framework. ACM SIGAda Ada Letters, Vol. 24,
No. 4, 2004

[16] Sutter, H.: The Many Faces of Deadlock. Dr.
Dobbs Journal (August 2008)

Glossary

CASE: Computer Aided Software Engineering

CFA: Causal Flow of Activities

CPU: Central Processing Unit

HLP: Highest Locker Protocol

HMI: Human Machine Interface

MDE: Model Driven Engineering

PCP: Priority Ceiling Protocol

PPOOA: Pipelines of Processes in Object Oriented
Architectures

RMA: Rate Monotonic Analysis

RTOS: Real-Time Operating System

RTS: Real-Time System

UML: Unified Modelling Language

XML: Extensible Mark-up Language

